AN UNSOLVABLE HYPOELLIPTIC DIFFERENTIAL OPERATOR

BY YAKAR KANNAI

ABSTRACT

It is proved that the differential operator $D_1 + ix_1 D_2^2$ is hypoelliptic everywhere, but is not locally solvable in any open set which intersects the line $x_1 = 0$. Thus, this operator is not contained in the usual classes of hypoelliptic differential operators. The proofs involve certain properties of the characteristic Cauchy problem for the backward heat operator.

1. Introduction

A differential operator A(x, D) with C^{∞} coefficients is called hypoelliptic if the equation A(x, D)u = f with $f \in C^{\infty}$ has only C^{∞} solutions. All the well known classes of hypoelliptic differential operators [2, 3, 4, 7] contain, together with every operator, also its formal adjoint. Since hypoellipticity implies certain a priori estimates (see e.g. [4]) and since a priori estimates for the formal adjoint of a differential operator imply local existence for the operator, it follows that the well known hypoelliptic operators are locally solvable. In this note we shall exhibit a hypoelliptic second order differential operator in two variables for which there exists a line such that the operator is not solvable at any point on this line. In particular, this operator is not contained in any of the classes considered in [2, 3, 4, 7] (in an open set which intersects the line) and its adjoint is not hypoelliptic there.

The differential operator is

$$(1) A = D_1 + ix_1 D_2^2$$

where, as usual, (x_1, x_2) denotes a point in the plane and $D_j = -i(\partial/\partial x_j)$, j = 1, 2, is the standard differentiation operator.

The nature of A becomes more transparent if the coordinates $x_1^2/2 = t$, $x_2 = x$ are used. Then

(2)
$$A = -i \sqrt{2t} \left(\frac{\partial}{\partial t} + \frac{\partial^2}{\partial x^2} \right)$$

Note that on each of the half planes $\{x_1 > 0\}$ and $\{x_1 < 0\}$, A is equal to a C^{∞} function times the backward heat operator (on each half plane separately). Thus, A is certainly hypoelliptic in the complement of the line $x_1 = 0$. In Section 2 we shall prove that A is hypoelliptic everywhere, and in Section 3 we shall prove that A is not solvable at any point on the line $x_1 = 0$. We recall that a differential operator P is called solvable at a point w if there is an open neighborhood V of w such that for every function $f \in C_0^{\infty}(V)$ the equation Pu = f possesses a solution u in $\mathcal{D}'(V)$.

We remark that both the hypoellipticity and the unsolvability of A on $x_1 = 0$ are connected with the fact that the characteristic Cauchy problem is not well-posed for the backward heat operator. Thus, the behavior of a solution of Au = f on the line $x_1 = 0$ is determined by the values of u elsewhere (note that $x_1 = 0$ corresponds to a time "later" than the time to which $x_1 \neq 0$ corresponds, whether x_1 is positive or negative, since $t = x_1^2/2$), which contributes to the smoothness of u near this line. The unsolvability of A near the line is also closely related to properties of the backward Cauchy problem, as will be elucidated in Section 3.

Note that our operator is a suitable modification of the operator $D_1 + ix_1D_2$, consider in [6]. Note also that the commutator $AA^* - A^*A = -2iD_2^2$ is of even order and its symbol does not change its sign, in contradistinction to the commutators of the operators considered in [2] and in [6].

2. Proof of the hypoellipticity of A:

Let u be a solution of the equation

$$(3) Au = f$$

where $u \in \mathcal{D}'(\Omega)$, $f \in C^{\infty}(\Omega)$ and Ω is an open subset of the plane. As was shown briefly in the introduction, it is well known that $u \in C^{\infty}(\Omega \cap \{(x_1, x_2) : x_1 \neq 0\})$. Hence, we have only to show that u is infinitely differentiable also in the neighborhood of the line $x_1 = 0$. We may assume, therefore, that Ω is an open disk whose center lies on the line $x_1 = 0$, and since A is invariant under translations in

the direction of the x_2 variable we may also assume that the center of Ω is at the origin. It suffices to prove that u is infinitely differentiable in a neighborhood V of the origin, where $\operatorname{cl}(V)$ (the closure of V) is contained in Ω . Let $\phi \in C_0^{\infty}(\Omega)$ be identically equal to 1 in a neighborhood V_1 of $\operatorname{cl}(V)$. Then

$$A\phi u = \phi A u + (D_1 \phi + i x_1 D_2^2 \phi) u + 2i x_1 (D_2 \phi) (D_2 u)$$

$$= g + (A\phi) u + 2i x_1 (D_2 \phi) (D_2 u)$$
(4)

(where we set $\phi f = g$). Let us first introduce new coordinates $-(x_1^2/2) = t$, $x_2 = x$ for the open half plane $\{(x_1, x_2) : x_1 > 0\}$. Then

(5)
$$\left(\frac{\partial}{\partial t} - \frac{\partial^2}{\partial x^2}\right) \phi u = \frac{-ig}{\sqrt{-2t}} - \frac{i}{\sqrt{-2t}} (A\phi)u + 2(D_2\phi)(D_2u)$$

The function $\phi u(\sqrt{-2t},x)$ vanishes identically on the line t=-K if K is sufficiently large and is bounded in the set $\{(t,x): -\infty < x < \infty, -K \le t \le -\epsilon\}$ for every $\epsilon > 0$. Hence, we may use the usual fundamental solution of the heat equation (5) and conclude that

(6)
$$(\phi u) \left(\sqrt{-2t}, x \right) = \frac{H(t)}{\sqrt{4\pi t}} e^{-x^2/4t} * \left(\frac{\partial}{\partial t} - \frac{\partial^2}{\partial x^2} \right) \phi u$$

$$= \int_{-\infty}^t \frac{1}{\sqrt{4\pi (t-\tau)}} \int e^{-(x-y)^2/4(t-\tau)} \left(\frac{\partial}{\partial t} - \frac{\partial^2}{\partial x^2} \right) \phi u \right] (\sqrt{-2\tau}, y) dy d\tau$$

(here H(t) denotes the Heaviside function) for negative values of t. Using (5), we see, more explicitly, that

$$(7) (\phi u)(\sqrt{-2t}, x) = -i \int_{-\infty}^{t} \frac{1}{\sqrt{4\pi(t-\tau)}} \int \exp\left[-\frac{(x-y)^{2}}{4(t-\tau)}\right] \frac{g(\sqrt{-2\tau}, y)}{\sqrt{-2\tau}} dy d\tau$$

$$+ \int_{-\infty}^{t} \frac{1}{\sqrt{4\pi(t-\tau)}} \int \exp\left[-\frac{(x-y)^{2}}{4(t-\tau)}\right] \left\{\frac{-i[(A\phi)u](\sqrt{-2\tau}, y)}{\sqrt{-2\tau}} + 2(D_{2}\phi)(D_{2}u)\right\} dy d\tau.$$

Changing back into the original coordinates (x_1, x_2) (where $x_1 > 0$) we find that

(8)
$$(\phi u)(x_1, x_2) = v(x_1, x_2) + w(x_1, x_2)$$

where

(9)
$$v(x_1, x_2) = -i \int_{x_1}^{\infty} \frac{1}{\sqrt{2\pi(y_1^2 - x_1^2)}} \int \exp\left[\frac{-(x_2 - y_2)^2}{2(y_1^2 - x_1^2)}\right] g(y_1, y_2) dy_2 dy_1$$

and

(10)
$$w(x_1, x_2) = \int_{x_1}^{\infty} \frac{1}{\sqrt{2\pi(y_1^2 - x_1^2)}} \int \exp\left[\frac{-(x_2 - y_2)^2}{2(y_1^2 - x_1^2)}\right].$$

$$\cdot \{-i[(A\phi)u](y_1, y_2) + 2y_1[(D_2\phi)(D_2u)](y_1, y_2)\}dy_2dy_1.$$

Denoting the partial Fourier transform of v with respect to the x_2 variable by $v^{\wedge}(x_1, \xi)$, we may rewrite (9) as

(11)
$$v^{\wedge}(x_1,\xi) = -i \int_{x_1}^{\infty} \exp\left[\frac{-(y_1^2 - x_1^2)\xi^2}{2}\right] g^{\wedge}(y_1,\xi) dy_1$$

Since $g = \phi f$ has a compact support, the integration in (11) is actually performed on a finite interval (of length at most equal to $\sqrt{2K}$). Moreover, for every positive number N there exists a constant C_N such that $|g^{(x_1,\xi)}| = |(\phi f)^{(x_1,\xi)}| \le C_N(1+|\xi|)^{-N}$ since $\phi f \in C_0^{\infty}(\Omega)$. Hence

(12)
$$|v^{\wedge}(x_1,\xi)| \leq \int_{x_1}^{\infty} |g^{\wedge}(y_1,\xi)| dy_1 \leq \sqrt{2K} C_N (1+|\xi|)^{-N}$$

It follows that $v(x_1, x_2)$ is infinitely differentiable with respect to x_2 , and each of the derivatives $D_2^k v$ is uniformly bounded as $x_1 \to 0_+$. Noting that (11) (or (9)) imply that

$$(13) D_1 v = g - i x_1 D_2^2 v$$

we see that the function D_1v along with each of its derivatives with respect to x_2 are bounded as $x_1 \to 0_+$. Differentiating (13) with respect to x_1 we find that $D_1^2v = D_1g - ix_1D_2^2v - D_2^2v$ is uniformly bounded as $x_1 \to 0_+$, and that the same holds for each of its derivatives with respect to x_2 . Iteration of this procedure leads us to the conclusion that each of the derivatives of v is uniformly bounded as $x_1 \to 0_+$ (and therefore v has in fact an infinitely differentiable extension to the closed half plane $\{(x_1, x_2) : x_1 \ge 0\}$.

Turning now our attention to $w(x_1, x_2)$, we note first that dist(supp grad ϕ, V)>0, since $\phi \equiv 1$ on the set V_1 which contains cl(V) in its interior. Moreover, the

functions $A\phi$ and $D_2\phi$ have a compact support, and the fundamental solution E(x,t) defined by the equations

$$E(x,t) = \frac{\frac{1}{\sqrt{4\pi t}}e^{-x^2/t}}{0} \qquad t > 0$$

$$t \le 0 \text{ and } x \ne 0$$

is infinitely differentiable except at the point x = t = 0. Hence, the functions $\psi(y_1, y_2)$ defined by the equations

$$(A\phi)(y_1, y_2)E\left(x_2 - y_2, \frac{y_1^2 - x_1^2}{2}\right) \quad y_1 \ge 0$$

$$\psi(y_1, y_2, x_1, x_2) = 0 \qquad \qquad y_1 \le 0$$

are in fact test functions in $C_0^{\infty}(\Omega)$ (of the variables y_1, y_2) and depend in an infinitely differentiable manner (as vector valued functions with values in $C_0^{\infty}(\Omega)$ of y_1, y_2) on x_1 and x_2 , where $(x_1, x_2) \in V$ and $x_1 \ge 0$. Since u is a distribution $(u \in \mathscr{D}'(\Omega))$ and thus is continuous on $C_0^{\infty}(\Omega)$ it follows that the scalar function

$$\int_{x_1}^{\infty} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi(y_1^2 - x_1^2)}} \exp\left[\frac{-(x_2 - y_2)^2}{2(y_1^2 - x_1^2)}\right] [(A\phi)(y_1, y_2) \cdot u(y_1, y_2)] dy_2 dy_1$$

$$= u(E(x_2 - \cdot, \frac{\cdot^2 - x_1^2}{2})(A\phi)(\cdot))$$

is infinitely differentiable with respect to x_1 and to x_2 in the intersection of V with the closed half plane $\{(x_1,x_2):x_1\geq 0\}$. Since D_2u is also a distribution in $\mathscr{D}'(\Omega)$ we may treat the second term in (10) in a similar way and conclude that $w(x_1,x_2)$ is infinitely differentiable in the closed half space $\{(x_1,x_2):x_1\geq 0\}$. Using (8) we thus see that the function $u(x_1,x_2)$ and every derivative of it are uniformly bounded (in V) as $x_1\to 0_+$. (Compare also with Corollary 3a in [1] and the remarks following it.)

In a similar fashion, let us define $v(x_1, x_2)$ and $w(x_1, x_2)$ for $x_1 < 0$ by the equations

(9')
$$v(x_1, x_2) = i \int_{-\infty}^{x_1} \frac{1}{\sqrt{2\pi(y_1^2 - x_1^2)}} \int \exp\left[\frac{-(x_2 - y_2)^2}{2(y_1^2 - x_1^2)}\right] g(y_1, y_2) dy_2 dy_1$$

and

(10')
$$w(x_1, x_2) = \int_{-\infty}^{x_1} \frac{1}{\sqrt{2\pi(y_1^2 - x_2^2)}} \int \exp\left[\frac{-(x_2 - y_2)^2}{2(y_1^2 - x_1^2)}\right].$$

$$\{i[(A\phi)u](y_1,y_2) - 2y_1[(D_2\phi)(D_2u)](y_1,y_2)\}dy_2dy_1$$

It follows once again that $\phi u = v + w$ for $x_1 < 0$ and that the function $u(x_1, x_2)$ as well as each of its derivatives are bounded as $x_1 \to 0_-$.

Summing up, see that we have proved, up to now, that the function $u(x_1, x_2)$ possesses C^{∞} boundary values as x_1 tends to zero from either the right or the left. In order to finish the proof that $u \in C^{\infty}(V)$ we have to show that the boundary values of u and its derivatives actually match up and that u has no "singular part" with support on the line $x_1 = 0$. That is, we have to demonstrate that $\lim_{x_1 \to 0} \left[(D^{\alpha}u)(x_1, x_2) - (D^{\alpha}u)(-x_1, x_2) \right] = 0$ for all multi-indices α , and that the distribution $v \in \mathscr{D}'(\Omega)$, defined by

$$(14) v(\phi) = u(\phi) - \lim_{\varepsilon \to 0} \left[\int_{-\infty}^{-\varepsilon} + \int_{\varepsilon}^{\infty} \right] \int_{-\infty}^{\infty} u(x_1, x_2) \phi(x_1, x_2) dx_2 dx_1$$

for $\phi \in C_0^\infty(\Omega)$, is the zero distribution. The functional $v(\phi)$ is well defined because of the existence of boundary values for $u(x_1,x_2)$ as $x_1 \to 0_+$ and $x_1 \to 0_-$, and obviously supp $v \subset \{(x_1,x_2): x_1=0\}$. According to [8, pp. 100–101], we may write

(15)
$$v = \sum_{i \ge 0} E v_i(x_2) D_1^i$$

when $v_j(x_2)$ are one dimensional distributions defined on functions of x_2 , E is the natural inclusion (extension) map $E: \mathcal{D}'(R^1 \cap V) \to \mathcal{D}'(R^2 \cap V)$ (E is the adjoint of the restriction map $R: C_0^{\infty}(R^2 \cap V) \to C_0^{\infty}(R^1 \cap V)$ where $R^1 = \{(x_1, x_2) : x_1 = 0\}$), and the sum is locally finite. Then

(16)
$$Av = \sum_{i} Ev_{j}(x_{2})D_{1}^{j+1} + \sum_{i} ix_{1}E(D_{2}^{2}v_{j})(x_{2})D_{1}^{j}.$$

For all $\phi \in C_0^{\infty}(V)$ and $w \in \mathcal{D}'(V)$,

$$(ix_1wD_1^j)(\phi) = w[D_1^j(ix_1\phi)] = jw(D_1^{j-1}\phi) + w(ix_1D_1^j\phi) \text{ for } j \ge 1.$$

Setting $w = E(D_2^2 v_i)(x_2)$, and noting that

$$E(D_2^2 v_i)(x_2)(ix_1 D_1^j \phi) = (D_2^2 v_i)(x_2) \lceil ix_1 D_1^j \phi \big|_{x_1 = 0} \rceil = (D_2^2 v_i)(x_2)(0) = 0,$$

we conclude that

(17)
$$Av = \sum_{j} Ev_{j}(x_{2})D_{1}^{j+1} + \sum_{j \geq 1} ijE(D_{2}^{2}v_{j})(x_{2})D_{1}^{j-1}$$

(we also use the fact that $ix_1E(D_2^2v_0)D_1^0=0$). Moreover, setting $\lim_{x_1\to 0}[u(x_1,x_2)-u(-x_1,x_2)]=v_{-1}(x_2)$, we find that the contribution to Au of this "jump" is equal to $iEv_{-1}(x_2)D_1^0=iEv_{-1}(x_2)$. Since Au=f and f is a continuous function at $x_1=0$, it follows from (17) that the v_j with the highest index j has to vanish, and therefore all the v_j with $j\geq 0$ have to vanish, (so that $v\equiv 0$). Hence, the term $iEv_{-1}(x_2)$ cannot be compensated by Av, and therefore $\lim_{x_1\to 0}[u(x_1,x_2)-u(-x_1,x_2)]=0$, and it follows from the invariance of A to translations in the x_2 variable that all the derivatives of the form D_2^ku are in fact continuous at $x_1=0$. Differentiating the equation Au=f and iterating the argument, we prove that for all positive integers k and k, $\lim_{x_1\to 0}[D_1^kD_2^ku(x_1,x_2)-(D_1^kD_2^ku)(-x_1,x_2)]=0$. Since we have shown that the distribution v (which is defined in (14)) vanishes identically, we conclude that u is a C^∞ function in a full neighborhood of the line $x_1=0$.

Let us note that the function

$$u(x_1, x_2) = \sum_{n=1}^{\infty} \frac{\exp\left[inx_2 - \frac{x_1^2 n^2}{2}\right]}{n^5}$$

is a classical solution of the equation $A^*u = 0$, but u is not infinitely differentiable on the line $x_1 = 0$. Hence, $A^* = D_1 - ix_1D_2$ is not hypoelliptic on that line. (Of course, the fact that A^* is not hypoelliptic follows also abstractly from the unsolvability of A).

3. Proof that A is not locally solvable on the line $x_1 = 0$.

The fact that the differential operator $A = D_1 + ix_1D_2^2$ is not locally solvable on the line $x_1 = 0$ is intimately related (as is easily seen by considering $A[u(x_1, x_2) - u(-x_1, x_2)]$) to a certain property of Cauchy problem for the backward heat operator; namely, to the fact that there exist C^{∞} functions (in the closed half plane $\{(t, x) : t \ge 0\}$) f such that there exists no solution u of the equation $\frac{\partial u}{\partial t} + \frac{\partial^2 u}{\partial x^2} = f$ with $u(x, 0) \equiv 0$. This latter fact is probably well known,

but we know of no reference to it. Therefore, we will give here a proof of the unsolvability of A. This proof is based on an averaging technique used by Hörmander [5] in his treatment of the characteristic Cauchy problem. For our (rather special) choice of an operator A, the argument is greatly simplified.

It suffices to prove that the origin is not a solvable point for A. According to a well known theorem of Hörmander (lemma 6.1.2 of [2], compare also [6]) the origin is not a solvable point for A if for every open set Ω containing the origin there exist functions f_{λ} , v_{λ} , depending on a real parameter λ and belonging to $C_0^{\infty}(\Omega)$ such that

(18)
$$\lim_{\lambda \to \infty} \left| \int f_{\lambda} v_{\lambda} \, dx \right| = \infty$$

(19) for every
$$k$$
, $\limsup_{\lambda \to \infty} \sum_{|\alpha| \le k} \sup_{x} |(D^{\alpha} f_{\lambda})(x)| < \infty$

(20) for every
$$N$$
, $\limsup_{\lambda \to \infty} \sum_{|\beta| \le N} \sup_{x} \left| (D^{\beta} A^* v_{\lambda})(x) \right| < \infty$.

It is natural to use the solutions

$$v(x_1, x_2; \xi) = \exp\left[i\xi x_2 - \frac{\xi^2 x_1^2}{2}\right]$$

of the homogeneous equation $A^*v=0$. We cannot apply them in a straightforward manner, however, since they are not at all small as $x_2\to\infty$. We remedy this by averaging $v(x_1,x_2;\xi)$ with respect to a certain (suitably chosen) density. We choose the density function to be equal to $1/\sqrt{2\pi\lambda}\exp\left[-(\xi-\lambda)^2/2\lambda\right]$ and obtain the function

(21)
$$u(x_1, x_2; \lambda) = \frac{1}{\sqrt{\lambda x_1^2 + 1}} \exp\left[\frac{-\lambda^2 x_1^2 - \lambda x_2^2 + 2i\lambda x_2}{2(\lambda x_1^2 + 1)}\right]$$

(It is easy to verify by a direct computation that $u(x_1, x_2; \lambda)$ is indeed a solution of the equation $A^*u = 0$). Let now Ω be an arbitrary (but fixed) open set containing the origin, and let $\delta > 0$ be a fixed number such that $\{x = (x_1, x_2): \|x\| < \delta\} \subset \Omega$. We may assume, of course, that $2\delta < 1$. Note that

(22)
$$\frac{\lambda^2 x_1^2 + \lambda x_2^2}{2(\lambda x_1^2 + 1)} \ge \frac{\lambda \delta^2}{2}$$

if either $|x_1| \ge \delta$ and $\lambda \ge 2$ or else, if $|x_2| \ge \delta$. From now on, let C_1, C_2 and so forth denote constants which depend on various parameters but which will be independent of λ and δ . It is clear that for every multi-index α

(23)
$$(D^{\alpha}u)(x_1, x_2; \lambda) = R_{\alpha}(x_1, x_2, \lambda, \sqrt{\lambda x_1 + 1}) \exp\left[\frac{-\lambda^2 x_1^2 - \lambda x_2^2 + 2i\lambda x_2}{2(\lambda x_1^2 + 1)}\right]$$

where R_{α} is a rational function of its arguments, which is regular if $\sqrt{\lambda x_1^2 + 1} \neq 0$. Hence, it follows from (22) that there exist constants $C_1(\alpha)$, $C_2(\alpha)$ such that

(24)
$$\left| (D^{\alpha}u)(x_1, x_2; \lambda) \right| \le C_1(\alpha) \lambda^{C_2(\alpha)} \exp \left[\frac{-\lambda \delta^2}{2} \right]$$

for $||x|| \le 1$, $|x_1| \ge \delta$ and $\lambda \ge 2$ or $|x_2| \ge \delta$.

Let $\phi \in C_0^{\infty}(\mathbb{R}^2)$ be a fixed non-negative function such that $\phi(x) \equiv 1$ for $||x|| \le 1$, $\phi(x) \equiv 0$ for $||x|| \ge 2$. Then it follows from (24) that

(25)
$$\left| D^{\alpha} A^* \left[\phi \left(\frac{x}{\delta} \right) u(x; \lambda) \right] \right| \leq C_3(\alpha) \delta^{-|\alpha| - 2} \lambda^{C_4(\alpha)} \exp \left[\frac{-\lambda \delta^2}{2} \right]$$

Choose now a function $F(x) \in C_0^{\infty}(\Omega)$ such that

Such a function F clearly exists. Then

(27)
$$\lim_{\lambda \to \infty} \lambda \int F(\lambda x) \phi\left(\frac{x}{\delta}\right) u(x; \lambda) dx$$

$$= \lim_{\lambda \to \infty} \int \int F(y_1, y_2) \phi \left(\frac{y}{\delta \lambda} \right) \frac{1}{\sqrt{\frac{y_1^2}{\lambda} + 1}} \exp \left[\frac{-y_1^2 - \frac{y_2^2}{\lambda} + 2iy_2}{2\left(\frac{y_1^2}{\lambda} + 1\right)} \right] dy_1 dy_2$$

$$= \phi(0) \iint F(y_1, y_2) \exp\left[\frac{-y_1^2 + 2iy_2}{2}\right] dy_1 dy_2 = a \neq 0$$

(We recall that $\phi(0) = 1$). Note that for fixed k, the function $f_{\lambda}(x) = \lambda^{-k-1}F(\lambda x)$ satisfies the inequality

(28)
$$\sum_{|\alpha| \le k} \sup_{x} \left| (D^{\alpha} f_{\lambda})(x) \right| \le C_{5}(k) \lambda^{-1}$$

Defining now $v_{\lambda}(x) = \lambda^{k+3} u(x; \lambda) \phi(x/\delta)$, we infer from (25) that (20) is satisfied for fixed N, since the exponential decrease kills all the constants, the powers of δ (which are fixed) and the powers of λ . The relations (18) and (19) follow from the relations (27) and (28), respectively.

Note that A^* is explicitly solvable; a solution of the equation $A^*u = f$ might be represented by its partial Fourier transform,

$$u^{\wedge}(x_1,\xi) = i \int_0^{x_1} e^{-(x_1^2 - y_1)^2 \xi^2/2} f^{\wedge}(y_1,\xi) dy_1$$

This formula makes sense at least for all $f \in C_0^{\infty}(\mathbb{R}^2)$. (Of course, an abstract proof of the solvability of A^* could be based on the fact that A is hypoelliptic).

REFERENCES

- 1. M. S. Agranovich, Partial differential equations with constant coefficients, Russian Math. Surveys 16 (1961), 23-90.
 - 2. L. Hörmander, Linear Partial Differential Operators, Springer-Verlag, Berlin, 1963.
- 3. L. Hörmander, Pseudo-differential operators and hypoelliptic equations, Amer. Math. Soc. Proc. Symp. Pure Math. 10 (1967), 138-183.
- 4. L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147-171.
 - 5. L. Hörmander, On the characteristic Cauchy problem, Ann. Math. 88 (1968), 341-370.
- 6. L. Nirenberg and F. Treves, Solvability of a first order linear partial differential equation, Comm. Pure Appl. Math. 16 (1963), 331-351.
- 7. E. V. Radkevich, A-priori estimates and hypoelliptic operators with multiple characteristics. Soviet Math. (Dokl.) 10 (1969), 849-853.
 - 8. L. Schwartz, Théorie des distributions, Vol. 1, Herman, Paris, 1950.

HEBREW UNIVERSITY OF JERUSALEM